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Study of Wave Propagation in Piezo-visco-thermo-elastic Material
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ABSTRACT

This study examines plane wave propagation in orthotropic piezo-visco-thermo-elastic half-space using memory-
dependent derivative analysis within the three-phase lag heat model. Coupled governing equations incorporating
kernel function and delay time are solved via the normal mode technique. This research is vital for enhancing
the performance of advanced materials in sensors, actuators, and energy harvesters, where wave propagation
and thermoelectric interactions are key factors. The results could significantly impact aerospace and mechanical
engineering, particularly in developing materials that can withstand complex thermal and mechanical stresses.
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INTRODUCTION

The field of thermoelasticity has evolved
significantly since its inception. Biot’s [1] classical
thermoelasticity theory (CTT) introduced a parabolic
type differential equation, but it failed to accurately
describe thermal signal velocity. This limitation led
to several important advancements in the field. Lord
and Shulman [2] enhanced the CTT by modifying
Fourier’s law with the addition of a relaxation time
parameter. Subsequently, Green and Naghdi [3], [4],
[5] introduced three distinct thermoelastic models
(GN-I, GN-II, and GN-III) to address various heat flow
problems. Tzou’s [6] contribution came in the form of
the dual-phase-lag (2PL) model, which incorporated
phase lags into Fourier’s law to account for thermal
inertia and microstructural interactions. Finally, Roy
Choudhuri [8] expanded the 2PL heat model into the
three-phase lag (3PL) by using an additional delay
time to represent the thermal displacement gradient.
These progressive developments have significantly
enhanced our understanding and modeling capabilities
in thermoelasticity.

The field of piezoelectricity has seen significant
advancements since its discovery in 1880 by the Curie
brothers [9]. This phenomenon, which involves the
generation of electrical charge in response to applied
mechanical stress, has found applications in various

domains including actuation, dynamic sensing, and
intelligent structures. Abo-Dahab and colleagues [12]—
[16] conducted extensive studies on reflection problems
involving fractional derivatives, providing new
insights into the behavior of these systems. Numerous
researchers [17]-[25] have explored various aspects
of plane wave behavior in piezoelectric materials,
furthering our understanding of wave propagation
in these systems. These studies have collectively
advanced our knowledge of piezoelectric materials
and their applications, paving the way for innovative
developments in fields such as civil engineering and
energy harvesting systems.

Wang and Li’s innovative concept of memory-
dependent derivatives (MDD) [26] emerged from
fractional derivative analysis. Their work illuminates
how sliding intervals transform a Caputo-type [27]
fractional derivative into an integral derivative form,
characterized by a distinctive kernel function. For
a function f defined on a sliding interval [( — 1), {],
the first-order MDD is expressed as an integral,
incorporating a kernel function K(z — &) and a delay
time factor T > 0. This formulation can be represented
mathematically as:
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The D, operates as a nonlocal operator. When the order
of differentiation approaches unity, the MDD can be
interpreted as a standard derivative in its most rigorous
sense. The selection of an appropriate kernel function
can be tailored to suit the intricacy of the problem
under consideration.
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Viscous  materials, encompassing amorphous

substances, polymers, and semi-crystalline materials
are crucial in diverse engineering disciplines. The Voigt
model [30] stands out as a prominent macroscopic
mechanical model for describing viscoelastic material
behavior. It effectively demonstrates how elastic
materials respond to stress, emphasizing that while
deformation is time-dependent, it remains recoverable.
Extensive research has been conducted on various
facets of viscoelasticity and thermo-viscoelasticity,
exploring issues such as [31]-[36].

The present study the propagation of plane waves in
piezo-visco-thermo-elastic materials, utilizing the
3PL MDD model to account for the complex interplay
between thermal, mechanical, and electrical fields.
The 3PL model, known for its ability to describe non-
Fourier heat conduction, is particularly well-suited
to capture the intricate time-dependent phenomena
inherent in piezo-visco-thermo-elastic behavior.

BASIC EQUATIONS

Following Roy Choudhuri [8], Voigt [30], Guha and
Singh [37], the fundamental dynamical governing
equations for anisotropic piezo-visco-thermo-elastic
crystals incorporating the MDD three-phase lag model
under the assumption of no heat sources, body forces,
or electric forces are given as:

e QGeneralized Hooke’s law

o,=c,,e,— N, E - B,.j T ..(3)
* Equation of motion
o, = pu, ..(4)

* Electric constitutive equation

D =¢,E+n,e +7T -(5)

with

E=—0, ...(6)
* Equation of electrostatics
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The 3PL heat law incorporating MDD can be expressed
as
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Nomenclature
T, = phase lag of heat flux
T = thermal temperature
p = density
Bl.j = thermal moduli tensors
0} = electrical potential
Mo & = piezothermal moduli tensors
T, = phase lag of the temperature gradient
@M = elastic stiffness tensor
E, = electric field density
a = fractional order parameter
K *,y = heat conduction tensor
T, = pyroelectric constants
T, = reference temperature
C, = specific heat at constant strain
K, = components of the thermal conductivity
D, = electric displacement
o, = components of the stress
T, = phase lag of thermal disp. Gradient
e, = component of strain
C” =~ =viscoelastic constants

ijrl
An over-dot signifies a time derivative, while the
subscript followed by a comma denotes the partial
derivative.
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FORMULATION OF THE PROBLEM

This study focuses on a homogeneous, orthotropic
piezo-visco-thermo-elastic medium situated in the
X,-plane and influenced by MDD. The constitutive
relations specific to the xx,-plane are represented
component-wise as:
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By applying equations (11) to (13) to equation (4), the
resulting equations of motion are derived as follows:
Cinlhy 11+ Csglh, 35+ (Cos + G g1+
(’731 +’715)‘B13' 1817-'1 =Py
(Cos + G )15 Cogll, 5+ Cogl
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Utilizing equation (16), the 3PL heat equation with
MDD is derived in the x x-plane

(1+TVDT)(K T’H+K T’33)+(1+TTDT)

.(16)
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Equations (14) and (15) are substituted into equation
(15) to obtain the electrostatics equation as follows:
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where, B, =B, 8, K’ =K' ,5,, K, = K3, and i is not
summed.

The following non-dimensional formulas are
considered:
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After applying dimensionless transformations to
equations (16)-(19) and subsequently omitting the
prime notation, we obtain the following set of equations
in their non-dimensional form
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SOLUTION OF THE PROBLEM

The solution can be decomposed into normal modes as
follows [38]:

[(P, u'|u U3, T](XI' X3' t) =
6, i, 5, TN x)explial x, - i .(25)

,» and 7" are the amplitudes of the
and T, respectively.

where, ¢, u",, u’
functions ¢, u,, u,,
Using equation (25) into equations (21)—(24) and using
D = d/dz, we obtain

(4 +6,0%)i + ADU; + ADg - AT =0
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A non-trivial solution for equations (4.2) to (4.5) exists
only if the determinant of the coefficient matrix of the
preceding linear system is zero. Then

(D® - AD® + BD*- CD” + E)
{o ()4 06) 1 (x6), T ()} =0

where, the coefficient expressions are written in the
Appendix.

(1)

Equation (31) can be expressed as:
(D?- k)D?- K)D?- K)D?- &)
{004 0a) i (). T (a)}=0

The solutions of equation (32) can be written as, which
are bounded as x, — oo.

(32
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where, k °, (n = 1 — 4) are the roots of equation (33).

Substituting equation (33) into equations (11)—(15) and
performing a dimensionless analysis within the normal
mode approach yields

0.1*1'0';3' 0.1*3' L4n' L 5n? 6n'
. expt k,X;) ...(34
D D! Z LoL ) ...(34)
where L, =1-4,j=1 - 8 are provided in the
Appendlx
BOUNDARY CONDITIONS

The following boundary conditions enable the solution
of the governing equations in a half-space (x,,x,,x, > 0)

055(x,0,8)= fi(x,1)=- £ explia(x - ct},
01,(%,0,1) =0 .(35)
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Tx,0.)= f(x,1)= fexplax - cff 35
@5(x,0,1)=0 .(37)

where, f, and f, are functions of (x, ?), /", f," are
constant, ® = ac is the wave frequency, and a be the

wave number in the xl-direction.

By inserting the proposed solutions into the boundary
conditions specified in equations (35)—(37) to solve for
the coefficients M (n=1—4), we obtain

24 LSnMn =- f1*
n=1

...(38)
4
z L,,M, =0
=1 ...(39)
4
S LM, = f
= (40)
4
z knLZnMn =0
=1 ..(41)
After solving equations (38)-(41), we get
-1
M1 L51 L52 L53 L54 h ﬁ
M, _ L, Le, Les Le, 0 0
M, Ly, Ly, Ly Ly, f; ~(42)
M, kLy kL, kL, kL, 0

where, the elements of matrix L., L., L., L,,i=1-4
are provided in Appendix.

Consequently, we are able to derive exact mathematical
expressions for the components of the displacement
vector, the temperature distribution, the -electric
potential field, the stress tensor elements, and the
electric displacement vector.

CONCLUSIONS

This study has examined the propagation of plane
waves in an orthotropic piezo-visco-thermoelastic half-
space using memory-dependent derivative analysis
within the three-phase lag heat model. The research
has yielded several significant findings:

1. The incorporation of the memory-dependent
derivative and three-phase lag model has allowed
for a more comprehensive description of the
complex behavior of piezo-visco-thermoelastic
materials under wave propagation.

2. The governing equations, which include crucial
factors such as relaxation time, time delay,
and kernel functions, have been successfully
formulated and solved using the normal mode
analysis technique.

3. The study has provided analytical expressions for
various physical quantities, including displacement
components, temperature distribution, electric
potential, stress tensor elements, and electric
displacement vector.

4. The analytical solutions derived in this study offer a
foundation for understanding the intricate interplay
between thermal, mechanical, and electrical fields
in piezo-visco-thermoelastic materials.

These results contribute to the broader understanding
of wave propagation in advanced materials and
have potential applications in the development
and optimization of sensors, actuators, and energy
harvesters.

APPENDIX

R =buby, B, = bysA - AA LR =bA - byA,
Fo=-AA, R=bA- bsA, R=-AA,
P=bA;, R=bAc+ AA; R=AA+AA,

Ro=AAs, By= AAct AA Ry = AA,
Pa= AAg- AA Py =bby Po=boA- AA
Re = bishy +boAy, Py = A A,

Re = bish - b, Ry =- AA,

Ay =RPBRs- RBRs+ RRyRs- RRAe+
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